Leanne Young, M.A., a former engineer in the private sector, is currently pursuing a doctorate in cognitive neuroscience at UT Dallas. As a research assistant at the Center for BrainHealth in lab of Dan Krawczyk, Ph.D., she investigates traumatic brain injury and virtual reality interventions and is a leader on a Department of Defense funded social cognition study.
What led you to pursue a Ph.D. in cognitive neuroscience?
During my last 20 years as an engineer, I researched the biomechanics of explosions on people and their important effects on the brain. As I was working with cognitive neuroscientists, neurologists, and psychologists, I became increasingly interested in the brain and increasingly frustrated with the qualitative nature of some of the tests. This motivated me to get my Doctorate in cognitive neuroscience so I could better understand the field and perhaps contribute to making it more quantitative.
Why did you join the Center for BrainHealth?
I initially came to the Center for BrainHealth seeking potential opportunities for collaboration between my engineering firm and the Center. During my visit, I was very impressed with the work that Dr. Dan Krawczyk and others at the Center were doing. The more I talked to individuals at the Center, the more I realized that it was the time for me to start my second career. About a year later, I decided to take a sabbatical from my job and to get my doctorate.
What are you currently working on at the Center for BrainHealth?
I am currently doing research on two different paths. First, I am working with others in the Krawczyk lab to use Virtual Reality to characterize the nature of an individual’s impairment from traumatic brain injury. Traditional neuropsychological tests for evaluating impairment have lacked the sensitivity needed to capture the real life impact of brain injury. However, using a Virtual Reality approach, we hope to develop tools that both simulate real life and yield quantitative data. Secondly, I am working with others in the Krawczyk and O’Toole labs on a social neuroscience project investigating the parts of the brain that contribute to social interactions, such as observing emotions, evaluating trustworthiness and detecting deception. My research uses the fMRI and advanced mathematical techniques to understand what occurs in the brain during an evaluation of whether someone is lying or telling the truth. While this is just one component of a social interaction, the tip of the iceberg maybe, it could lead us down a road to increasing our understanding of how the “social brain” functions.With a better understanding of the social brain, we can seek new interventions for people suffering from conditions such as Autism that impair social cognition.
What are some of the interesting questions you’ve answered since you’ve been here?
My first project focused on the amygdala, the part of the brain that lights up when there is emotional salience. We were investigating whether it is a good marker for selective attention in traumatic brain injury patients. In the scanner, individuals with TBI looked at faces, places, and objects, and were instructed to selectively attend to one and block out the others. While there are other brain regions used for attending to places or attending to faces, we found that the amygdala is actually a more specific marker for selective attention to faces. This understanding of how the amygdala responds to neutral faces eventually fed into my social neuroscience work.
What excites you about your work? Why do you come to work in the morning?
First, I’m fascinated by the brain. I’m shocked by how little we know and, at the same time, I’m amazed by the potential to learn more daily. In terms of healthcare and quality of life, we are at the very beginning of doing what we can to help enhance brain function. It is so exciting to be a witness and, in a small way, a contributor at this time, when we are on the cusp of making breakthroughs in brain research that will revolutionize brain health. I hope to one day be involved in research that looks at the intimate relationship between the brain and the rest of the body. There is a lot of exciting work to do in this area. We often gloss over the fact that the brain and the body work together as one big system. We are going to see people treating their brain the way they do their bodies in terms of exercise, training, and a focus on health. When some of these future breakthroughs in brain research start taking hold, I think everybody’s lives will be changed.
What do you do for fun?
Well, right now I’m fitting a five-year doctorate into three. But I do play the piano and I love international travel. My favorite places to visit right now are Italy and Israel, but … there are many other places on my bucket list!