Reprogramming the Brain to Health Research Symposium
Center for BrainHealth
The Reprogramming the Brain to Health Research Symposium brings together the most distinguished brain scientists to share and learn up-to-the-minute breakthroughs in brain research and recognize a pioneering neuroscientist whose innovation has made a tremendous contribution to the area of brain research with the Dr. Charles L. Branch BrainHealth Award.
This year, the ninth annual Symposium focused on emerging methods being used and developed to study brain function and recognized Dr. Marcus E. Raichle for his seminal contributions to the study of human brain function.
"The talks at this year's symposium provided a broad overview of the current state-of-the-art technologies that are dramatically changing how neuroscientists can unravel the mysteries of the brain, in our effort to promote brain health," said Dr. Mark D'Esposito, UC Berkeley neuroscience and psychology professor. "The highlight of the symposium was a keynote address from Dr. Marcus Raichle, one of the pioneers of the study of brain function using brain imaging. His talk highlighted how far we have come in the past 30 years in understanding the brain yet how much is left to discover."
Held at UC Berkeley on March 27, 2015, the Symposium was presented by the Center for BrainHealth and its partners at the Henry H. Wheeler Jr. Brain Imaging Center and the Helen Wills Neuroscience Institute at UC Berkeley. The Symposium featured the following speakers:
David Feinberg, M.D., Ph.D.
Pushing the limits of MRI
Dr. Feinberg is an Adjunct Professor of Neuroscience at UC Berkeley and of Radiology at UCSF and president of Advanced MRI Technologies (AMRIT). He is an MR physicist with expertise in pulse sequences and MR scanner design.
John Clarke, Ph.D., Sc.D. and Ben Inglis, Ph.D.
Ultralow field MRI
Dr. Clarke is a Professor of Physics at UC Berkeley. His main research interest is in the development, noise limitations and applications of Superconducting Quantum Interference Devices (SQUIDs). Dr. Ben Inglis is the chief physicist and the main force behind the UC Berkeley Brain Imaging Center. He is an expert in MRI data acquisition specifically in the context of functional MRI
Jose Carmena, Ph.D.
Brain-Computer Interface Technology
Dr. Carmena is an Associate Professor of Electrical Engineering and Neuroscience at the UC Berkeley, and Co-Director of the Center for Neural Engineering and Prostheses at UC Berkeley and UCSF. His research program is aimed at understanding the neural basis of sensorimotor learning and control, and at building the science and engineering base that will allow the creation of reliable neuroprosthetic systems for the severely disabled.
Jyoti Mishra, Ph.D. and Joaquin Anguera, Ph.D.
Gaming Technology
Dr. Mishra is a postdoctoral fellow in the lab of Adam Gazzaley, M.D. at UCSF and at the Brain Plasticity Institute at PositScience. Her research examines cognitive training tools in randomized controlled trials and is interested in the interaction between attention & working memory, dynamic multi sensory audiovisual environments, and the neural mechanisms underlying behavioral performance. Dr. Anguera is a Research Scientist in the labs of Adam Gazzaley, M.D. and Patricia Arean, Ph.D. at UCSF. The goal of his research is to examine how unique aspects of cognitive and motor performance contribute to the process of skill acquisition.
Marcus Raichle, M.D., Ph.D.
Keynote Address: The Restless Brain
Professor of Radiology, Neurology, and Anatomy & Neurobiology
Washington University School of Medicine
William Jagust, M.D.
Positron Emission Tomography
Dr. Jagust is a Professor of Public Health and Neuroscience and Associate Dean of Academic Affairs at UC Berkeley. His research is aimed at understanding the structural, functional and biochemical basis of brain aging and neurodegenerative diseases associated with brain aging.
Robert Knight, M.D.
Electrocorticography
Dr. Knight is a Professor of Psychology and Neuroscience at UC Berkeley. His laboratory studies the contribution of prefrontal cortex to human behavior.